

Kirchoff's Laws

- A solid, liquid, or sufficiently dense gas emits light (EMR) of all frequencies and wavelengths a continuous spectrum. (blackbody radiation)
- At "high" temperatures a thin, low density gas emits unique and discrete frequencies and wavelengths a bright line spectrum.
- At "low" temperatures a thin, low density gas absorbs unique and discrete frequencies and wavelengths a dark line spectrum.
- For a given gas the bright lines and dark lines occur at exactly the same frequencies and wavelengths.

A solid, liquid, or dense gas emits a **continuous spectrum**.

screen

prism (or diffraction grating)

slit in barrier

hot filament

A high temperature thin gas emits a **bright line spectrum**.

> high temperature hydrogen gas

A low temperature thin gas absorbs a **dark line spectrum**.

low temperature hydrogen gas

hot filament

Hydrogen Emission Spectrum

Hydrogen Absorption Spectrum

Helium Emission Spectrum

Sodium Emission Spectrum

Sodium Absorption Spectrum

This view of the Sun from helioviewer.org shows only EMR at wavelength 304 Å (or 30.4 nm) – an emission line of singly ionized helium (He II).

AIA 304

2015-10-12 15:00:06

.

Earth Scale

Image credit: RSpec-Astro.com

Image credit: RSpec-Astro.com

Profile

Image credit: RSpec-Astro.com

Both of these spectra are for Hydrogen. Why the difference?

Molecular Hydrogen

Atomic Hydrogen

Neptune

5 Oaks Observatory, Marton, New Zealand 0.3m / f6.3 / StellaCam3 / Unfiltered

StarAnalyser 100 / 100L/mm / D=1.84nm/pix

Image credit: RSpec-Astro.com

Molecules and Light

	Interacts with: (MW, IR, V, UV)	Effect on molecule: (type of reaction)
CO		
N ₂		
O ₂		
CO ₂		
CH ₄		
H ₂ O		
NO ₂		
O ₃		

Why are some photons absorbed but others are not?

How does a photon *emitted* by a molecule compare to the photon that excited it in the first place?

How are molecules that rotate different than the others?

	Interacts with: (MW, IR, V, UV)	Effect on molecule: (type of reaction)
СО	MW, IR	rotation, vibration
N ₂	_	
O ₂	_	
CO ₂	IR	vibration
CH ₄	IR	vibration
H ₂ O	MW, IR	rotation, vibration
NO ₂	MW, IR, V, UV	rotation, vibration, excitation, dissoc
O ₃	MW, IR, UV	rotation, vibration, dissociation

Why are some photons absorbed but others are not?

How does a photon *emitted* by a molecule compare to the photon that excited it in the first place?

How are molecules that rotate different than the others?

What's up with this dog?

- Any object will naturally emit some amount (and type) of electromagnetic radiation!
- This radiation is a result of the inherent temperature of the object. This radiation represents energy lost by the atoms that make up the substance.
- It is called *black*body radiation to distinguish it from radiation that may be reflected by the object. (The object doesn't have to be black!)

Oh, look! A "black body"! (*i.e.* an object that happens to be black...) Let's put it in the fire!

[©] Matthew W. Milligan

The hotter the object, the greater the *amount* of radiation <u>and</u> the greater the *frequency* of the radiation that it emits.

The blackbody curve reveals the frequency or wavelength at which the object emits the *most* radiation. This is called the peak frequency or peak wavelength.

[©] Matthew W. Milligan

Wein's Law

Wein's displacement law relates the peak *wavelength* of the radiation to the temperature of the object.

$$\lambda_{peak} = \frac{b}{T}$$

where:
$$b = 2.898 \times 10^{-3} \text{ m} \cdot \text{K}$$

 $\lambda = \text{wavelength}$
 $T = \text{temperature}$

[©] Matthew W. Milligan

Stefan-Boltzmann Law

The total power output of a blackbody radiator is proportional to the product of temperature to the fourth power and surface area:

$$P = A\sigma T^4$$

where: $\sigma = 5.670 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$ A = surface areaT = temperature