Newton' s $3^{\text {rd }}$ Law

The Nature of Force

Forces - Dynamics

I. Laws of Motion: 1 \& 2

- inertia, force, mass
- weight
II. Law 3
- interaction \& nature of force
- types of force: normal, friction
- air resistance, terminal velocity
III. Applications/Problem Solving
- components, inclines

	The student will be able to:	HW:
1	State Newton's $1^{\text {st }}$ and 2 2 situations in order to determine what forces act on an object and to explain the object' s resulting behavior.	$1-5$
2	Recognize and state the proper SI unit of force and give its equivalence in fundamental units and use the relation $\mathbf{F}_{\text {net }}=$ ma to solve problems.	$6-10$
3	Recognize the difference between weight and mass and convert from one to the other.	$11-18$
4	State and utilize Newton' s 3rd Law to solve related problems.	$19-21$
5	Understand and utilize the concept of the normal force to solve related problems.	$22-25$
6	Understand and utilize the relation between friction force, normal force, and coefficient of friction for both cases: static and kinetic.	$26-32$
7	State the factors that influence air resistance and describe qualitatively the effect of each factor on the magnitude of the frictional force. And explain what is meant by "terminal velocity".	$33-35$
8	Resolve forces into components using trigonometry and use the results to solve related force problems.	$36-40$
9	Apply the concept of force components to objects on an incline and solve related problems.	$41-47$

Newton's $3^{\text {rd }}$ Law of Motion

Forces always occur in pairs. If object A exerts a force on object B, then object B exerts a force on object A that is equal in magnitude and opposite in direction.

Popularly known as: "equal and opposite action and reaction".

All forces arise in pairs as a result of an interaction of two objects. The equal and opposite forces (of each pair) act on two separate objects.

Newton's $3^{\text {rd }}$ Law of Motion

Forces always occur in pairs. If object A exerts a force on object B, then object B exerts a force on object A that is equal in magnitude and opposite in direction.

$$
\vec{F}_{B A}=-\vec{F}_{A B}
$$

What forces are there when a person stands at rest on the ground being pulled down by gravity?

If this is "the action", what is "the reaction"?

What object exerts this force on the person?

Is this a $3^{\text {rd }}$ Law pair of forces?

No! Not every pair of equal and opposite forces is a $3^{\text {rd }}$ Law pair!

These two forces are not always equal and opposite - only if the person is not accelerating.
 up on feet. But, what is the "reaction" to this F_{N} force?

This is a $3^{\text {rd }}$ Law pair of forces: equal and opposite at all times!

a $3{ }^{\text {rd }}$ Law pair of forces!

Force of
Person on $F_{\text {PF }}$ Floor

Force of Floor on Person

$$
\stackrel{\rightharpoonup}{F}_{P F}=-\stackrel{\rightharpoonup}{F}_{F P}
$$

always equal and opposite!

Not a $3^{\text {rd }}$ Law pair of forces!

$$
\begin{gathered}
\stackrel{\rightharpoonup}{F}_{E P} \stackrel{?}{=}-\stackrel{\rightharpoonup}{F}_{F P} \\
\text { maybe... } \\
\ldots \text { maybe not }
\end{gathered}
$$

Force of $F_{\text {EP }}$ Earth on Person

Force of
Floor on Person

Not always equal and opposite!

Objects in Contact (when worlds collide ...)

- Whenever two objects touch there will be an interaction and forces will occur.
- There are two aspects of contact: frictional force and normal force.

	The student will be able to:	HW:
1	State Newton's $1^{\text {st }}$ and 2 2 situations in order to determine what forces act on an object and to explain the object' s resulting behavior.	$1-5$
2	Recognize and state the proper SI unit of force and give its equivalence in fundamental units and use the relation $\mathbf{F}_{\text {net }}=$ ma to solve problems.	$6-10$
3	Recognize the difference between weight and mass and convert from one to the other.	$11-18$
4	State and utilize Newton' s 3rd Law to solve related problems.	$19-21$
5	Understand and utilize the concept of the normal force to solve related problems.	$22-25$
6	Understand and utilize the relation between friction force, normal force, and coefficient of friction for both cases: static and kinetic.	$26-32$
7	State the factors that influence air resistance and describe qualitatively the effect of each factor on the magnitude of the frictional force. And explain what is meant by "terminal velocity".	$33-35$
8	Resolve forces into components using trigonometry and use the results to solve related force problems.	$36-40$
9	Apply the concept of force components to objects on an incline and solve related problems.	$41-47$

Normal Force

- The word "normal" in this context means perpendicular to the surface of an object.
- By definition, "normal force" is the amount of force perpendicular to the surface at a point of contact between two objects.
- The magnitude of the normal force depends on how much the two objects are pressed together and results from an interaction of atoms in the objects.

